提高热喷涂层致密性技术的研究现状及发展方向
点击数:798发布时间:2014-12-22 08:52:45
热喷涂技术能赋予材料表面一些特殊的性能,如提高耐腐蚀性、电绝缘性、耐磨减摩、抗高温氧化性及电磁屏蔽吸收等功能。热喷涂层材料可以是金属、金属合金、陶瓷、金属陶瓷、塑料以及复合材料等,其涂层广泛应用于航空航天、石油化工、机械制造、冶金、交通运输、建筑等领域[1 ~7]。但是,热喷涂层的表面和内部会存在一定数量的孔隙,服役于腐蚀环境时,腐蚀介质会通过这些孔隙穿过涂层,直至基体,对基体产生腐蚀。腐蚀产物会在涂层/基体界面积累,其疏松的结构特征以及体积膨胀会导致涂层龟裂、脱落,以致涂层失效[1,2]; 同时,涂层孔隙还会降低涂层与基体之间和涂层内部的结合强度,影响涂层使用寿命。因此,如何减少或消除涂层中的孔隙已成为完善热喷涂层制造技术的一个重要研究方向。
[摘 要] 提高热喷层的致密性,减少其孔隙,可以防止涂层过早腐蚀,延长其使用寿命。简述了热喷涂层孔隙出现的原因; 介绍了减少热喷涂层孔隙率、提高涂层耐腐蚀性能的方法; 指出了提高热喷涂层耐腐蚀性能的发展方向。
1 热喷涂层孔隙出现的原因
热喷涂层是由无数熔融或半熔融的变形粒子互相交错呈波浪式堆叠在一起而形成的层状组织结构。在常规大气环境喷涂过程中,这些变形粒子与周围介质发生氧化反应,而使涂层中出现氧化物。变形粒子在交错堆叠的过程中,由于飞行速度和温度不同,使得不断堆叠起来的涂层呈现出明显的不规则状,导致堆叠粒子之间存在缝隙或孔洞。在冷却凝固过程中,若熔融粒子间析出的气体来不及从粒子堆内逸出,就会在涂层中形成气孔。同时,变形粒子随温度的不断降低而产生收缩,若得不到液相的及时补充,也会在涂层中形成孔洞[1,2]。
2 减少热喷涂层孔隙的方法
2. 1 喷涂工艺
不同的热喷涂工艺,得到的涂层质量也不同。喷涂颗粒的温度越高、速度越大,涂层越致密、孔隙率越低。普通火焰喷涂的孔隙率为 10% ~ 20%,电弧喷涂在 10%左右,等离子喷涂为 2% ~ 5%,超音速火焰喷涂为 0. 1% ~ 2. 0%,爆炸喷涂为 0. 1% ~ 1. 0%[1,2]。
前 3 种热喷涂层必须经过封孔后才能在腐蚀环境下使用,否则防腐蚀能力大大降低。后 2 种的涂层致密、均匀,孔隙率低,经过封孔处理后会具有更加优越的防护效果。随着对涂层质量要求的日益提高,已出现高速活性电弧喷涂[8]、气体隧道式等离子喷涂[9]、反应等离子喷涂[10]、液相等离子喷涂[11]、冷气动力喷涂等新的喷涂技术。这些新技术有助于改善粒子受热与熔化状态,进一步提高涂层质量和降低孔隙率,从而获得更好的综合性能,以满足更为苛刻的服役条件。喷涂的工艺参数,如喷涂距离、送粉方式、喷枪移动速度、粉末颗粒度、主气与辅气流量、送粉气流量、电功率等对有效降低涂层孔隙率具有较大的作用和影响。在一定范围内,等离子喷涂陶瓷涂层时增加喷涂功率,增大主气、辅气流量,不仅能提高等离子弧的温度,使喷涂粉末熔化程度较好,还能够提高熔融粒子的飞行速度[12,13]。熔融粒子获得较高的温度和飞行速度,所得涂层无分层和裂纹,涂层间夹杂物减少,涂层更均匀、致密,孔隙率降低,显微硬度高,耐磨性能更好[14,15]。选取合适的喷涂距离也能降低孔隙率,这是因为喷涂粉末在等离子弧区熔融、加速过程中,只有离喷嘴某一段距离时速度最大; 粒子撞击基体或涂层的速度较低时,不能较好地铺展开来将涂层间气体排掉,容易形成孔洞和夹杂物,导致涂层疏松,层间裂纹也较大[16]。喷涂特征参数 CPSP( 即喷涂工作电流 × 工作电压/主气流量) 对等离子喷涂 Al2O3-13%TiO2陶瓷涂层微观组织和性能的影响如下: 随 CPSP 提高,涂层中完全熔化区比例增大,层与层之间结合增强,涂层致密度增加,结构均匀性得到改善,孔隙率降低[17,18]。尽管如此,喷涂工艺参数的优选只能使涂层孔隙减少,并不能彻底消除涂层孔隙。
2. 2 封孔处理
封孔处理是采用刷涂、浸渍、喷涂等方法,将惰性材料填充到涂层孔隙中。除封闭孔隙之外,封孔剂也能在涂层外围形成一层均匀、光滑的新“涂层”。因此,封孔剂除应具有良好的耐腐蚀性能之外,还必须有较好的渗透性和流动性、较低的黏稠度以及与涂层材料具有良好的相容性。目前,常用的封孔剂可分为有机封孔剂和无机封孔剂 2 大类。前者多用于常温和不高的环境温度( < 200 ℃) 下,后者多用于高温涂层的封孔[2]。
2. 2. 1 有机封孔剂
目前,应用较多的有机封孔剂主剂有酚醛树脂、环氧树脂、丙烯酸树脂、有机硅树脂、呋喃树脂、微晶石蜡系列等,溶剂多采用醇类、酯类、芳香族碳氢化合物等。酚醛树脂和有机硅树脂耐水性好、渗透能力强,多用于要磨削的陶瓷或金属涂层的封孔,如高压泵曲轴颈、活塞杆件和液压油缸等。微晶石蜡系列封孔剂化学性能十分稳定,能耐海水、淡水、酸和碱的腐蚀,并具有气体密封和无油润滑的效果,适用于食品、化工等不允许一般润滑油的场合,但是不耐热( 熔点在 85 ℃ 左右) 。用酚醛树脂、环氧树脂和磷酸对 Al2O3-13% TiO2等离子喷涂层进行刷涂封孔处理[19]: 前两者处理后涂层的孔隙率分别是( 5. 3 ± 0. 9) %和( 3.7 ± 0.8) %,低于磷 酸 封 孔 后 ( 13. 5 ± 0. 2 ) % 和 未 封 孔 涂 层( 13. 9 ±1.1) %,耐腐蚀性能明显优于未封孔试样; 使用环氧树脂和有机硅透明树脂对 Cr2O3-8%TiO2等离子喷涂层进行浸渍封孔,孔隙率由未封孔涂层的5.847%降为2. 985%,2.657%,且真空封孔效果优于常压封孔[20]。用甲基丙烯酸酯、呋喃树脂、酚醛树脂、环氧树脂、乙烯基酯对等离子喷涂 Al2O3涂层进行浸渍封孔,并对封孔后涂层的耐腐蚀性能进行对比发现,酚醛树脂、甲基丙烯酸酯、环氧树脂封孔后涂层的耐腐蚀性能优于其他封孔材料处理的[21]。用硅氟树脂对超音速火焰喷涂 WC/10Co4Cr 涂层进行刷涂封孔,孔隙率降低,耐腐蚀性能优于电镀硬铬工艺[22]。除部分加入耐热填料或经改性处理的有机封孔剂能耐热 400 ~500 ℃以上外,大多数有机封孔剂耐热性较差,只能应用于温度不高( <200 ℃) 的场合,这在一定程度限制了其广泛应用。